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In this paper, a genetic clustering algorithm based on dynamic niching with niche migration

(DNNM-clustering) is proposed. It is an effective and robust approach to clustering on the basis of a

similarity function relating to the approximate density shape estimation. In the new algorithm, a

dynamic identification of the niches with niche migration is performed at each generation to

automatically evolve the optimal number of clusters as well as the cluster centers of the data set

without invoking cluster validity functions. The niches can move slowly under the migration operator

which makes the dynamic niching method independent of the radius of the niches. Compared to other

existing methods, the proposed clustering method exhibits the following robust characteristics: (1)

robust to the initialization, (2) robust to clusters volumes (ability to detect different volumes of

clusters), and (3) robust to noise. Moreover, it is free of the radius of the niches and does not need to

pre-specify the number of clusters. Several data sets with widely varying characteristics are used to

demonstrate its superiority. An application of the DNNM-clustering algorithm in unsupervised

classification of the multispectral remote sensing image is also provided.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering analysis [1,2] is a core problem in data mining with
innumerable applications spanning many fields. The primary
objective of clustering analysis is to partition a given set of data or
objects into groups or clusters so that objects in the same cluster
are similar in some sense and differentiate from those of other
clusters in the same sense. In the past, many clustering methods
were proposed [1–5]. Generally, these algorithms can be broadly
divided into two classes [3]: hierarchical and partitional.
Hierarchical clustering proceeds successively by either merging
smaller clusters into larger ones or by splitting larger clusters.
Moreover, the hierarchical clustering algorithms can be subdi-
vided into agglomerative methods [6–8], which proceed by series
of fusions of the objects into groups, and divisive methods [9,10],
which separate objects successively until all clusters are singleton
clusters. Partitional clustering attempts to directly decompose the
data set into several disjointed clusters based on some criteria.
The most common criterion adopted by partitional clustering is
minimizing some measure of dissimilarity in the samples within
ll rights reserved.

X. Chang).
each cluster and maximizing the dissimilarity of different clusters.
Among the partitional clustering methods, the K-means [1]
algorithm is one of the more widely used algorithms.

However, most hierarchical and partitional clustering methods
have a drawback that the number of clusters need to be specified
a priori. For hierarchical clustering, the problem of selecting the
number of clusters is equivalent to deciding in which level to cut
the tree. Partitional clustering algorithms typically require the
number of clusters as user input. Since a priori knowledge is
generally not always available, estimation of the number of
clusters from the data set under review is required under some
circumstances. The classical approach of determining the number
of clusters involves the use of some validity measures [11–13].
Within a range of the values of cluster number, the evaluation of a
certain validity function of the clustering result is performed for
each given cluster number and then an optimal number is chosen
for the validity measure. The number of clusters searched by this
method depends on the selected clustering algorithm, and the
performance of the selected algorithm may rely on the initializa-
tion. Some other methods of estimating the number of clusters
are based on the idea of cluster removal and merging. In
progressive clustering [14,15], the number of clusters is over-
specified. After convergence, spurious clusters are eliminated and
compatible clusters are merged. The thickest challenge of this

www.elsevier.com/pr
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method lies in how to define the spurious and compatible
clusters. Moreover, although overspecification of the cluster
number can reduce the initial cluster center effects, there is no
way to guarantee that all clusters in the data set will be found. An
alternative version of the progressive clustering is to seek one
cluster at a time until no more ‘‘good’’ clusters can be found
[16,17]. The performances of these techniques are also dependent
on the validity functions, which are used to evaluate the
individual clusters.

Since the global optimum of the validity function would
correspond to the most ‘‘valid’’ solutions with respect to the
functions, stochastic clustering algorithms based on genetic
algorithms (GAs) [18–21] have been reported to be able to
optimize the validity functions to determine the number of
clusters and partitioning of the data set simultaneously. In these
GA-based algorithms, the validity functions are regarded as the
fitness function to evaluate the fitness of the individual, which
guides the evolution to search for the ‘‘valid’’ solution. In recent
years, several clustering algorithms based on simple GA or its
variants have been developed [22–36]. These algorithms fall into
two broad categories based on the representations for the
clustering solutions. The first category uses a straightforward
encoding, in which the chromosome is encoded as a string of
length n, where n is the number of data points and the element of
the chromosome denotes the cluster number that data point
belongs to, such as used in Refs. [22–24]. The desired number of
clusters should be specified in advance. Moreover, this approach
does not reduce the size of the search space and searching the
optimal solution can be onerous when the data points proliferate.
It is for this reason that some researchers opt to use a relatively
indirect approach where the chromosome encodes the centers of
the clusters, and each datum is subsequently assigned to the
closest cluster center [25–36]. This kind of algorithms can be
subdivided into fixed-length encoding algorithms [25–31], which
use a fixed-length string to describe the cluster centers and the
number of clusters is specified a prior, and variable-length
encoding algorithms [32–36], which use a variable-length string
to describe the cluster centers and the number of clusters is
automatically evolved. Although the number of cluster centers
need not to be given in advance in the variable-length encoding
algorithms, the initial values of the cluster centers are constrained
to be in the range from 2 to kmax, and kmax is the upper bound of
the number of clusters and should be specified beforehand.
Because the traditional GAs are suitable for locating the optimum
of unimodal functions as they converge to a single solution of the
search space, all these GA-based clustering algorithms consider
the clustering problem as a unimodal problem. Each chromosome
is described by a sequence of the cluster centers. When every
cluster center is contained in the chromosome, then the fitness
function reaches its global optimum. However, a simpler way is to
consider the clustering problem as a multimodal problem and
each cluster center corresponds to a local optimum of the fitness
function. In this circumstance, each chromosome represents a
cluster center and all the local optima of the fitness function
should be found. Algorithms that allow the formation and the
maintenance of different solutions can be used to solve this
multimodal problem.

In order to preserve the population diversity, which prevents
GAs being trapped by a single optimum, niching methods have
been developed. The basic idea of the niching methods is based
upon the natural ecosystems, which maintain population diver-
sity and permit the GA to investigate many optima in parallel. In
nature, an ecosystem is typically composed of different physical
niches that exhibit different features and allow both the
formation and the maintenance of different types of life (species).
It is assumed that a species is made up of individuals with similar
biological features capable of interbreeding among themselves,
but unable to breed with individuals of other species [37]. By
analogy, in artificial systems, a niche corresponds to a local
optimum of the fitness function, and the individuals in one niche
exhibit similar feature in terms of a given metric. Among niching
methods, fitness sharing (FS) and implicit fitness sharing are the
best known and the most widely used methods [38–42]. In the
former, the fitness represents the resource for which the
individuals belonging to the same niche compete [38], while in
the latter [40,41], the sharing effects are achieved by means of a
sample-and-match procedure.

In FS, the fitness of an individual is reduced if there are many
other individuals near it and so the GA is forced to maintain
diversity in the population [38]. This method should define a
similarity metric on the search space and an appropriate niche
radius, representing the maximal distance among individuals to be
considered similar and therefore belonging to the same niche. In
most circumstance, it is difficult to give an effective value for the
niche radius without any a priori knowledge. Deb and Goldberg
proposed a criterion for estimating the niche radius given the
heights of the peaks and their distances [39]. Since in most of
the real applications there is very little prior knowledge about the
fitness landscape, it is difficult to estimate the niche radius. In the
implicit fitness sharing [40], sharing is accomplished by inducing
competition for limited and explicit resources, and there is no
specific limitation on the distance between peaks. This method
avoids the difficult of appropriately choosing the niche radius and
can be used to deal with problems in which the peaks are not
equally spaced [40–42]. So, one of the most important limitations of
FS seems to be removed. In fact, some other parameters, such as the
size of the sample of individuals that compete, the number of
competition cycles and the definition of a matching procedure, need
to be set. In order to improve the performance of the FS methods,
several dynamic niching methods were proposed [46,47]. These
methods are based upon a dynamic, explicit identification of species
discovered at each generation and the FS mechanism is restricted to
individuals belonging to the same species. However, the perfor-
mance of these algorithms is dependent on the niche radius. When
wrong value for the niche radius is selected, the algorithm did not
find all the niches perfectly. In Ref. [48], a species conserving
genetic algorithm (SCGA) was proposed which does not consider
any sharing mechanism. Once a new species is discovered, its fittest
individual is retained in the next generations until a fitter individual
for that species is generated. Therefore, each species populating a
region of the fitness landscape survives during the entire evolution,
whether or not it corresponds to an actual niche. Moreover, the
performance of this algorithm is also depends on the niche radius.
In addition, all these algorithms are not robust to noise. When the
data set contains noise points, the performances of these algorithms
are poor.

In this paper, a new clustering algorithm based on dynamic
niching with niche migration (DNNM-clustering) is proposed
which is robust to noise and cluster volumes. Within the
DNNM-clustering, a dynamic niching with niche migration is
developed to preserve the diversity of the population. A simpler
representation is adopted, whereby each individual represents a
single cluster center. All the niches presented in the population at
each generation are automatically and explicitly identified. Then,
the application of FS is limited to individuals belonging to the
same niche. In order to overcome the dependence of the niche
radius, a niche migration is considered. This makes the algorithm
work properly and independent of the niche radius even if some
noise points exist and the peaks are not equally spaced and have
different cluster volumes.

The rest of this paper is organized as follows. Section 2
provides the fitness function of the clustering problem used in the
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algorithm. The dynamic niching with niche migration is presented
in Section 3. Section 4 describes the evolutionary clustering
algorithm. Experimental results on several artificial data sets and
remote sensing image are given in Section 5. Experimental results
demonstrate the effectiveness of the DNNM-clustering algorithm.
Finally, conclusions are drawn in Section 6.
2. The fitness function

Let X¼ fx1;x2; . . . ;xng be a finite subset of a N-dimensional
vector space, K be the number of clusters and Sðxj; ciÞ denote the
similarity measure between xj and the i th cluster center ci. Our
clustering goal is to find ci to maximize the total similarity
measure JðcÞ with

JðcÞ ¼
XK

i ¼ 1

Xn

j ¼ 1

exp -
Jxj-ciJ

2

b

 ! !g

; ð1Þ

where c¼ ðc1; c2; . . . ; cK Þ and b can be defined by

b¼
Pn

j ¼ 1 Jxj-xJ2

n
where x ¼

Pn
j ¼ 1 xj

n
: ð2Þ

According to the analysis of g in Ref. [49], we know that g can
determine the location of peaks in the objective function JsðcÞ. And
the value of b is no longer sensitive to the peak. Let ~JsðxkÞ be the
total similarity of the data point xk to all data points with

~JsðxkÞ ¼
Xn

j ¼ 1

exp-
Jxj-xkJ

2

b

 !g

; k¼ 1;2; . . . ;n: ð3Þ

This function can be seen closely related to the density shape of
the data points in the neighborhood of xk. A large value for ~J sðxkÞ

means that the data point xk is close to some cluster centers and
has many data points around it. A good estimation of g can give a
good estimation of the peak of ~JsðxkÞ. Here, we use the data set
shown in Fig. 1(a) to see the influence of g on (3) and more
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Fig. 1. (a) Five-clusters data set. (b), (c) and (d) are plots of (3) (the
detailed explanation can be found in Ref. [49]. Note that the ‘‘�’’
in Fig. 1 means the value of ~JsðxkÞwith respect to the data point xk,
k¼ 1;2; . . . ;n. According to Fig. 1(b), only two clusters will be
found when g¼ 1 and all the five peaks will be separated when g
increases to 5 and 10 as shown in Figs. 1(c) and (d).

Here, the CCA algorithm [49] is used to estimate g. For
convenience, it is presented in the following:
1.
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Set m¼ 1 and e1 ¼ 0:97.

2.
 Calculate the correlation of the value of ~JsðxkÞgm

and ~JsðxkÞgðmþ 1Þ
.

3.
 If the correlation is greater than or equal to the specified e1,
then choose gm to be the estimate of g, else m¼mþ1 and goto
step 2.
After getting the estimation of g, the function ~JsðxkÞ becomes a
multimodal function which the number of peaks is equal to the
number of clusters. Therefore, the clustering problem can be
transformed into a multimodal problem through this objective
function. In the following, our new algorithm will be used to
estimate all the local optima of ~J sðxkÞ. The number of the local
optima is the same to the number of clusters, and the local optima
are the cluster centers.
3. The dynamic niching with niche migration

Niching methods have been developed to minimize the effect
of genetic drift resulting from the selection operator in the
traditional GA in order to allow the parallel investigation of many
solutions in the population. We begin this section by providing a
brief overview of the fitness sharing method, which is a
representative niche method. In order to overcome the drawbacks
of the FS, a dynamic niching with niche migration is proposed.
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roximate density shapes) with g¼ 1, 5 and 10, respectively.
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Table 1
The dynamic niching algorithm with niche migration.

Input: the population Popt at generation t, the population size P, the niches

radius s( this value is obtained by the algorithm shown in Table 2)

Sort the current population according to the raw fitness

vðtÞ ¼ 0 (the number of actual niches at generation t)

uðtÞ ¼ 0 (the number of niche master candidates)

NC ¼ | (the niche master candidate set)

DN¼ | (the dynamic niche set)

Phase I: The niche master candidates identification.

For i¼ 1 to P do

if the i th individual is not marked then

uðtÞ ¼ uðtÞþ1

NðuðtÞÞ ¼ 1 (the number of individuals in the u(t)th niche candidate set)

For j¼ iþ1 to P do

if (dði; jÞos) and (j th individual is not marked)

insert j th individual into the niche master candidate set NC,

NðuðtÞÞ ¼NðuðtÞÞþ1

end if

end for

If ðNðuðtÞÞ41Þ then

vðtÞ ¼ vðtÞþ1

mark i th individual as the niche master of the v(t)th niche

insert the pair (i th individual, NðuðtÞÞ) in DN

end if

end if

End For

Phase II: The migration of the niches.

Calculate the distance between the niche master candidates

For l¼ 1 to uðtÞ

If j th niche is the nearest neighbor to l th niche, then determine

the communication edge between these two niches according to Theorem 1.

If there exits communication between the two niches and Fl oFj , then

niche l migrates toward niche j, otherwise niche l keep station.

End For

D.-X. Chang et al. / Pattern Recognition 43 (2010) 1346–1360 1349
3.1. Fitness sharing

Fitness sharing modifies the search landscape by reducing the
fitness of an individual in densely populated regions. It works by
derating the fitness of each individual by an amount related to the
number of similar individuals in the population. Specifically, the
shared fitness fsh;tðiÞ of an individual i at generation t is given by

fsh;tðiÞ ¼
ftðiÞ

mtðiÞ
; ð4Þ

where ftðiÞ is the raw fitness of the individual, and mtðiÞ is the
niche count which depends on the number and the relative
positions of the individuals within the P population. The niche
count is calculated as

mtðiÞ ¼
XP

j ¼ 1

shðdijÞ; ð5Þ

where P is the population size, dij is the distance between the
individual i and j, and shðdijÞ is the sharing function which
measures the similarity between two individuals. The most
commonly used form of sh is

shðdijÞ ¼
1-

dij

ssh

� �ash

if dijossh;

0 otherwise;

8><
>: ð6Þ

where ssh is the niche radius and ash is a constant parameter
which regulates the shape of the sharing function. The value of ash

is commonly set to 1, yielding to a triangular form for the sharing
function [50]. The distance dij between individual i and j is
implemented by defining a metric on either the genotypic or the
phenotypic space.

It has been proved that when the number of individuals within
the population is large enough and the niche radius is properly
set, FS provides as many niches in the population as the number
of peaks in the fitness landscape [51,52]. But, there are several
problems with the fitness sharing approach. In order to ensure
that subpopulations are steadily formed and maintained, only the
individuals belonging to the same niche should share the
resources of the niche. This assumption is not generally true for
the FS methods [53], because each individual in the population
shares its fitness with all the individuals located at a distance
smaller than the niche radius, no matter for the actual peak, i.e.,
for the niche, to which they belong. As a consequence, individuals
belonging to different peaks may share their fitness, while they
should not. Moreover, the radius of the niches should be specified
and this requires a priori knowledge of how far apart the optima
are. However, no information about the search space and the
distance between the optima is available in the practical
optimization problems. When the niche radius is wrong, the
algorithm cannot find all the niches. In order to overcome these
drawbacks, a dynamic niching with niche migration is proposed.

3.2. Dynamic niching with niche migration

In this section, we propose a dynamic niching method which is
independent of the niche radius. From Refs. [38–48], we can see
that the radius of the niches plays a crucial role in the
identification of the niches. If the niche radius chosen is too
small, many niches may be found in every generation. On the
other hand, a large value of the radius will make many solutions
indistinguishable. This means that too few niches will be
conserved. If the radius is so large that only one niche master is
found, the algorithm will degenerate into a simple genetic
algorithm and only find one optimum with the largest fitness
value.
In our algorithm, two strategies, the initialization of the niche
radius and the migration of the niche candidates, are used to
achieve the goal of independent of the initial niche radius. After
the initialization of the niche radius, the dynamic niching method
attempts to find the niches according to this radius at each
generation. And the niche candidates identified will change their
location under the migration operator. The skeleton of dynamic
niching algorithm is presented in Table 1 and the initialization of
the niche radius in Table 2.

When a niche radius inputs, a preprocessing of the input by the
algorithm shown in Table 2 is conducted to ensure the niche
candidates will be sufficiently diverse in the first generation. Here
Z is a constant and ZAð1;2Þ.

In phase II of the algorithm shown in Table 1, a migration
operator is introduced. In reality, if a city is prosperous and its
citizen lead comfortable lives, then it will attract the people living
nearby to migrate to it. For the clustering problem, the effect of
this migration operation is to change the relative position of the
niches in the entire population. Based on this analogy between
our society and a clustering problem, a migration operator is
introduced and explained in the following. First, several defini-
tions used in the migration operator are given.

Definition 1 (Niche attraction). Suppose c1; c2; . . . ; cm are m

individual in a niche, and the fitness values are f1; f2; . . . ; fm,
respectively. The attraction one niche acts on another niche is
defined as

F ¼ ðf1þ f2þ � � � þ fmÞ=m: ð7Þ

Definition 2 (Migration principle). Let Ni and Nj be two niches,
and the niche attraction of the two niches are Fi and Fj,
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Table 2
The initialization of the niche radius.

Input: Pop1, the population at generation 1 sinit , an input niche radius

The Phase I described in Table 1 is used to determine the number of master

candidate uð1Þ and the number of actual niche masters vð1Þ.

If (vð1Þr2 and uð1Þ4P=3) then

s¼ Zsinit

Else if (vð1Þ ¼ 1 or ðuð1Þ-vð1ÞÞo1) then

s¼sinit=Z
End

M4
M3

M2

M1

Fig. 2. An example of influence of noise.
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respectively. If Fi4Fj, then Nj will migrate to Ni. Otherwise, Ni will
migrate to Nj.

Definition 3 (Distance of niches). Let Mi and Mj be two masters of
two niches Ni and Nj, then the distance of these two niches is
defined as

dNðNi;NjÞ ¼ dðMi;MjÞ ¼ JMi-MjJ
2: ð8Þ

For the niche candidate sets identified in phase I of the
algorithm shown in Table 1, the nearest neighbor of each niche
should be found. Here, a uðtÞ � uðtÞmatrix D is used to indicate the
nearest neighbor of the niche candidates,

Dij ¼

1 if dNðNi;NjÞ ¼ min
ka j;k ¼ 1;2;...;uðtÞ

dNðNk;NjÞ;

0 otherwise;

8<
: ð9Þ

where dNðNi;NjÞ is the distance between niche i and niche j. If
Dij ¼ 1, then given the ability for the two niches to communicate.
And the communication topology is specified by a matrix S, where
Sij is the number sent from niche i to niche j. Here, Sij ¼ 1 means
exist communication edge between these two niches, and Sij ¼ 0
indicates no communication edge between them. The value of Sij

is determined by Theorem 1.

Theorem 1. Let Ni and Nj be two niches, and Mi and Mj be the niche

masters of these two niches with fitness value fi and fj, a line that

intersects the two niche masters can be written as

x¼MiþkðMj-MiÞ; kA ½0;1�: ð10Þ

Then, a series of points x1;x2; . . . ;xl is generated along this line and

the fitness of those points is calculated by Eq. (4). If ( mA ½1; l�
satisfies

f ðxmÞominðfi; fjÞ; ð11Þ

then a valley lies between Ni and Nj, and at the same time there is no

communication between them and Sij ¼ 0. Otherwise, the commu-

nication exist and Sij ¼ 1.

The concept of Theorem 1 is simple. Given two end points in
Euclidean space, then choose a number of points along the line in
between the two end points and calculate the fitness of those
points. In this way, it is possible to determine if a valley lies
between the two end points (i.e., Mi and Mj). If a valley lies
between the two niches (i.e., ( mA ½1; l�, satisfies the inequality
(11)), then the two niches can be seen as two different species and
they should not communicate with each other. If no point has
lower fitness than either of the endpoints, then no valley lies
between the two niches, and they can communicate with each
other. The implementation of Theorem 1 is terminated on the first
point discovered that had lower fitness than either of the two end
points. It is quite obvious how powerful this theorem is and how
the decisions of whether the communication of niches exist using
it.

In fact, the inequality (11) used in Theorem 1 is not robust to
noise. For example, given two end points M1 and M4, and two
samples in between (see Fig. 2). From Fig. 2, we can see
f ðM3ÞoFðM4Þ. Then according to Theorem 1, there is no
communication between M1 and M4. However, the slight
variance between the function values of M3 and M4 can be seen
as a result of the noise. In order to overcome the influence of
noise, we define a noise tolerance factor r ð0:8rrr1Þ and the
inequality (11) modified as

f ðxmÞorminðfi; fjÞ: ð12Þ

Then inequality (12) will be used in the determination of
communication between two points.

After the determination of the communication, the magnitude
of migration is defined.

Definition 4 (Migration magnitude). Let Ni and Nj be two niches
identified in one generation, and niche attraction of the two
niches are Fi and Fj, respectively. The distance of these two niches
is dNðNi;NjÞ and the niche masters be Mi and Mj. If Fi4Fj, then the
migration magnitude of the individual in Nj is defined as

Dl¼ d
Fi

d2
NðNi;NjÞ

r
,

; ð13Þ

where r
,

is the direction vector from the individual in Nj to Mi, and
d is a small constant greater than 0, called the migrating rate. We
imagine here that the niches are migrating with negligible
magnitude.

After the dynamic identification of the niche masters of the
population Popt at generation t, the species belonging to the niche
master candidate can be defined as a subset Si

t a| of individuals in
the population Popt which have a distance from the master
candidate less than the niche radius and do not belong to other
species. If the number of the individuals in Si

t is larger than 1, then
this subset is assumed as the actual niche, otherwise, the single
individual in the subset is considered as an isolated individual and
all the isolated individuals form the subset S�t . Then, the
population Popt at the generation is partitioned into a number
vðtÞ of species, say S1

t ; S
2
t ; . . . ; S

vðtÞ
t , and a number of isolated

individuals

Popt ¼
[

iA f1;2;...;vðtÞg

Si
t

0
@

1
A [ S�t : ð14Þ

After the identification of niches, the sharing fitness of each
individual was calculated according to (4). Here, the shared fitness
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value for an individual within a dynamic niche (identified by the
dynamic niching algorithm) is its raw fitness value divided by the
niche count. Otherwise, the individual belongs to the isolated
category, and its fitness is not modified. The niche count in (5) is
modified as

mtðiÞ ¼
X

pj A Si
t

shðdijÞ; ð15Þ

and shðdijÞ is computed according to (6). Here, only the individuals
belonging to the same niche share their fitness and the fitness of
the isolated individuals is not modified.

After all the niches have been found, the new population is
constructed by applying the usual genetic operators. Since some
niche masters may not survive during the evolution, the species
elitist strategy is implemented to enable the niche masters to
survive. Here, only the actual masters are conserved.
4. The DNNM-clustering algorithm

In this section, we propose the dynamic niching with niche
migration clustering algorithm (DNNM-clustering), which can be
used to optimize the objective function to automatically evolve
the proper number of clusters as well as appropriate partition of
the data set.
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4.1. Chromosome representation and initialization

For any GA, a chromosome representation is needed to
describe each chromosome in the population. The representation
method determines how the problem is structured in the
algorithm and the genetic operators that are used. Each chromo-
some is made up of a sequence of genes from certain alphabet. An
alphabet can consist of binary digits (0 and 1), floating-point
numbers, integers, symbols (i.e., A, B, C, D), etc. In early GAs, the
binary digit was used. It has been shown that more natural
representations can get more efficient and better solutions.
Michalewicz [20] has performed extensive experiments to
compare real-valued and binary GAs and shown that the
real-valued GA is more efficient in terms of CPU time. Therefore, in
this paper, real-valued numbers are used to describe the chromo-
some.

Here the chromosome is encoded the center of the cluster.
Each chromosome is described by a sequence of N real-valued
numbers where N is the dimension of the feature space. That is to
say, the chromosome of the algorithm is written as

c¼ ½c1; c2; . . . ; cN �: ð16Þ

An initial population of size P for DNNM-clustering algorithm
is usually chosen at random. In this paper, several P randomly
chosen data points from the data set with the exception that no
two may be the same are used to initialize the P chromosome.
Fig. 3. The c function of our estimation.

Table 3
The values of CCA.

Data set 5 and 10 10 and 15 15 and 20 Selected g

Data 1 0.9000 0.9972 0.9993 10

Data 2 0.9824 0.9925 0.9954 5

Data 3 0.8277 0.9990 0.9996 10

Data 4 0.9779 0.9927 0.9962 5

Data 5 0.9759 0.9948 0.9976 5
4.2. Fitness function

The fitness function is used to define a fitness value to each
candidate solution. Here, the fitness function of the chromosome,
f, is defined as

f ðcÞ ¼ ~J sðcÞ ¼
Xn

j ¼ 1

exp-
Jxj-cJ2

b

 !g

; ð17Þ

where xj, j¼ 1;2; . . . ;n are all data points in the data set to be
clustered.
4.3. Evolutionary operators

Any combination of standard selection, crossover and mutate
operators can be employed by our algorithm. Here intermediate
recombination and uniform neighborhood mutation are used.

For two randomly chosen parents c1 and c2, the offspring c of
the intermediate recombination crossover (with probability pc) is

c¼ c1þrðc1-c2Þ; ð18Þ

where r is a uniformly distributed random number over ½0;1�.
Each chromosome undergoes mutation with a probability pm.

If the minimum and maximum values of the data set along the q

th dimension are cq
min and cq

max, respectively. If the position to be
mutated is the q th dimension of a cluster center with value cq,
then after uniform neighborhood mutation the value becomes

cq
0 ¼ cqþrmRðcq

max-cq
minÞ; ð19Þ

where R is a uniformly distributed random number over ½-1;1�
and rmAð0;1Þ.

4.4. Description of the algorithm

In our DNNM-clustering algorithm, a chromosome represents
one cluster center and is evaluated by using the fitness function
described in Section 4.2. The niches are identified by the dynamic
niching algorithm at each generation and the fitness sharing is
computed in every niches. The evolutionary operators, selected on
the basis of probability distribution, can be crossover or mutation,
where the former transforms two individuals (parents) into two
offspring by combining parts from each parent, and the latter
develops on a single individual and creates an offspring by
mutating that individual. The elitist strategy [21] is implemented
by replacing the worst chromosome of the current population
with the niche masters found at each generation. The process
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terminates after some number of generations, fixed either by the
user or determined dynamically by the program itself, and the
niche masters obtained is taken to be the solution.
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Fig. 5. The average number of clusters and its standard error by (a) DNS, (
The DNNM-clustering algorithm is described as follows:
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Initialize a group of cluster centers with size of P.

2.
 Evaluate each chromosome.

3.
 Apply the dynamic niching algorithm and apply the fitness

sharing among the individuals belonging to the same niche.

4.
 If the termination condition is not reached, go to Step 5.

Otherwise, select the niche master from the population as the
final cluster centers.
5.
 Apply the selection operator.

6.
 Apply crossover operator to the selected individuals based on

the crossover probability.

7.
 Apply mutation operator to the selected individuals based on

the mutation probability.

8.
 Evaluate the newly generated candidates.

9.
 Apply the elitist strategy.
10.
 Go back to Step 3.
5. The robust property to noise

A good clustering method should be robust that it can
determine good clusters for noisy data set. Several different
classes of robust methods (such as the M, R, L estimators) exist
[43–45]. Here, the influence function [45] is used to show that our
method is robust to noise. Let x¼ fx1; . . . ;xng be an observed data
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GA, (c) DFS, (d) DNNM-clustering. In all the experiments P¼ 100.
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Fig. 6. The cluster centers obtained by using (a) DNS, (b) SCGA, (c) DFS, (d) DNNM-clustering. In all the experiments P¼ 100.
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set of real numbers and y is an unknown parameter to be
estimated. We consider xi and y to be scalars and an M estimator
[45] is generated by minimizing the form

ŷ ¼ argmin
y

Xn

i ¼ 1

rðxi-yÞ; ð20Þ

where r is a function that can measure the loss of xi and y. If we
let cðxi-yÞ be the derivative of rðxi-yÞ, i.e., cðxi-yÞ ¼ @rðxi-yÞ=@y,
then the M estimator is obtained by

Xn

i ¼ 1

cðxi-yÞ ¼ 0: ð21Þ

The influence function (IF) can help us to assess the relative
influence of individual observations toward the estimation value.
It has been shown that influence function of an M estimator is
proportional to its c function [45]. For a location M estimator, we
have the influence function

IFŷ ðx; F;yÞ ¼
cðx-yÞ

Ec0ðx-yÞ
; ð22Þ

where F is the distribution of x. If the influence function of an
estimator is unbounded, a noise might case trouble. In the
following, we will show the boundedness of the IF function. Let

rðxi-cÞ ¼ 1-expð-b-1
ðxi-cÞ2Þg: ð23Þ

Minimize (20) with (23) is equivalent to minimize

n-
Xn

i ¼ 1

expð-b-1
ðxi-cÞ2Þg ð24Þ
and this also equivalent to maximize

Xn

i ¼ 1

expð-b-1
ðxi-cÞ2Þg ð25Þ

which is the objective function of our genetic algorithm with one
cluster. Our estimation of the cluster center c (by (1)) is equivalent
to an M estimator with the

Pn
i ¼ 1 expð-b-1

ðxi-cÞ2Þg in (20) replaced
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by a dissimilarity measure (23) and the c function of our
estimation is

cðxi-cÞ ¼
-2b-1

ðxi-cÞ

expðb-1
ðxi-cÞ2Þ

: ð26Þ

Since the influence function IFŷ ðx; F; yÞ is proportion to cðxi-cÞ

according to (22), we need only to analyze the term cðxi-cÞ. By
applying the L’Hospital’s rule, we have

lim
xi-þ1

cðxi-cÞ ¼ lim
xi--1

cðxi-cÞ ¼ 0: ð27Þ

Thus, we have IFðxi; F; cÞ ¼ 0 when xi tends to positive or
negative infinity. From Eq. (27), ( M40, when jxijZM, we have
jcðxi-cÞjo1. jcðxi-cÞjo1 is continuous on interval ½-M;M�, thus, (
K40, for 8 xA ½-M;M�, it holds that jcðxi-cÞjrK . Let G¼maxf1;Kg,
then for all xAð-1; þ1Þ, we have jcðxi-cÞjrG. According to
above, the function cðxi-cÞ with (23) is bounded and continuous,
as shown in Fig. 3. Therefore, the influence of an extremely large
or small xi on our estimator is very small according to (27). In fact,
(27) also shows that an extremely large or small xi can be thought
of a new observation that have no influence (i.e., IFðx; F; yÞ ¼ 0) on
our estimator.

From the analysis above, we can deduce that our estimator has
a bounded and continuous influence function. Hence, it is robust
to noise from the robust statistical point view.
6. Experiments results

In order to validate the proposed algorithm, we have
performed a set of experiments with several data sets with
widely varying characteristics and multispectral remote sensing
image. The experiments show that DNNM-clustering has high
performance and flexibility.
6.1. Experiments on artificial data sets

In this section, the performances of the DNS [46], SCGA [48],
DFS [47] and DNNM-clustering are compared through the
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experiments. In the experiments, the crossover and mutation
probabilities used by all algorithms are pc ¼ 0:8 and pm ¼ 0:005,
respectively. The population size is taken to be 150 for Data 3
since it has more clusters than the other data sets, while it is taken
to be 100 for the other data sets. The parameter used in mutation
operator is rm ¼ 0:2. The solution acceptance threshold rf used by
SCCG is rf ¼ 0:95. The total number of generations G is equal to
200. For all the experiments, the entire evolution of G generations,
i.e., the run, has been repeated R¼ 30 times, with different initial
populations in order to reduce the well-known effects of
randomness embedded in the GAs.

In order to evaluate the performance, the average number of
niches and the standard errors [47] can be used. For each
evolution, we compute at each generation the number of niches
vðtÞ (the population size P and niche radius s being fixed) and
store it in a R� G matrix W, where one row for each evolution and
one column for each generation. At the end of each experiment
consisting in R runs, we compute the average number of niches
discovered at each generation by averaging the R values vðtÞ in all
the columns

/vðtÞS¼
1

R

XR

i ¼ 1

Wit ; t¼ 1;2; . . . ;G: ð28Þ

Then, the values /vð1ÞS; . . . ;/vðGÞS represent the average
behavior of the algorithm for the assigned values of P and s.
Finally, we compute the standard errors

eð/vðtÞSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

PR
i ¼ 1ðWit-/vðtÞSÞ2

R-1

 !vuut ð29Þ

of /vðtÞS, 8tAf1;2; . . . ;Gg.
In the experiments, five artificial data sets with widely varying
characteristics are used for comparison. All the algorithms run
with two different radii. The number of niches (i.e., the number of
clusters) and the cluster centers obtained are given. Here, we only
give the number of niches of the first data set as example. In the
experiments, the value of g in (3) should be determined by the
CCA algorithm. The correlations for the five data sets are shown in
Table 3.
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Fig. 12. The cluster centers obtained by using (a) DNS, (b) SCGA, (c) DFS, (d) DNNM-clustering. In all the experiments P¼ 100.
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Data 1: This data set consists of 300 two dimensional data
points distributed over six disjoint clusters where each cluster
contains 50 data points. This data set is shown in Fig. 4. The CCA
result is shown in the first row of Table 3. g¼ 10 will be a good
estimate. The final number of clusters and the standard errors
obtained by DNS, SCGA, DFS and DNNM-clustering are given in
Figs. 5(a), (b), (c) and (d), respectively. From Fig. 5, we can see all
the algorithms are able to find out the number of optimal of the
fitness function (i.e., the cluster centers) when the radius is
properly selected. But for a small niching radius, s¼ 0:5, only
DNNM-clustering algorithm works properly. The cluster centers
obtained by all algorithms are shown in Fig. 6.

Data 2: This data set consists of 250 two dimensional data
points distributed over five spherically shaped clusters as shown
in Fig. 7. The clusters present here are highly overlapping, each
consisting of 50 data points. The CCA result is shown in the second
row of Table 3. g¼ 5 will be a good estimate. As is evident, all
algorithms succeed in providing the number of clusters as well as
the cluster centers with s¼ 2 while DNS, SCGA and DFS fail in
doing so with a small radius. The cluster centers obtained by all
algorithms are shown in Fig. 8.

Data 3: This data set is consists of 16 clusters as shown in
Fig. 9. The CCA result is shown in the third row of Table 3. g¼ 10
will be a good estimate. As earlier, DNS, SCGA and DFS succeed
with a proper radius and fail with a small radius. Only DNNM-
clustering algorithm is insensitive to the choice of the initial
radius. The cluster centers obtained by all algorithms are shown
in Fig. 10.

Data 4: This is a two dimensional data set with different
volume as shown in Fig. 11. There is one large cluster and two
small clusters. The CCA result is shown in the fourth row of
Table 3. g¼ 5 will be a good estimate. The cluster centers obtained
by all algorithms are shown in Fig. 12. For this data set, the
volumes of the clusters are different, so the peaks of the fitness
function are not identical. In fact, the three peaks are 106.3, 39.3
and 34.9, respectively. For DNS and DFS, there are some false
optimal values around the local optimal with the larger cluster
with a smaller radius and succeed with a larger radius. For SCGA,
the two small peaks are discarded during the global optima
identification phase due to their small values compared with the
largest one. Moreover, this result is also show that the DNNM-
clustering algorithm is robust to cluster volumes.
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Fig. 14. The cluster centers obtained by using (a) DNS, (b) SCGA, (c) DFS, (d) DNNM-clustering. In all the experiments P¼ 100.

Table 4
The mean of the number of clusters obtained by DNS, SCGA, DFS and DNNM-

clustering applied to the two real-world data sets, here AC denotes the actual

number of clusters present in the data set.

Data set AC DNS SCGA DFS DNNM-clustering

Iris 3 9.65 1.85 9.50 2

Breast cancer 2 11.80 5.65 11.95 2

Fig. 15. The pseudocolor image of a part of MiYun obtained from Landsat-7

multispectral scanner composite by displaying band 5 as red, band 4 as green, and

band 3 as blue. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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Data 5: This data set consists of 500 two dimensional data
points distributed over five clusters. A very noisy background
consisting 100 data points uniformly distributed within the
region defined by ½-1;1� � ½-1;1� is added to this data set. This
data set is shown in Fig. 13. The CCA result is shown in the fifth
row of Table 3. g¼ 5 will be a good estimate. The cluster centers
obtained by all algorithms are shown in Fig. 14. From Fig. 14, it is
seen that only the DNNM-clustering succeed in providing the
number of clusters as well as the cluster centers while DNS, SCGA
and DFS fail miserably in doing so. For SCGA, the false optima and
the optima with smallest fitness were discard through the
principle of identify global optima used by SCGA. But for DNS
and DFS, it is difficult to discard these values. The false optima
obtained by DNS and DFS are dependent of the initialization of the
algorithm.

In the following, two real-world high-dimensional data sets
(Iris and Breast Cancer) from UCI Machine Learning Repository
[54] are used to test whether the DNNM-clustering algorithm
works well for the high-dimensional real data sets. Table 4 shows
cluster numbers found on the two real data sets. It can be seen
from Table 4 that the DNNM-clustering algorithm can be used to
determine the number of clusters in a data set. For Iris data, all
algorithms cannot provide the correct number of clusters, but
only the DNNM-clustering algorithm can find two clusters. The
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DNNM-clustering algorithm has separated the first class-Setosa-
from the others. It is known that two classes (Versicolor and
virginica) have a large amount of overlap, while the class Setosa is
linearly separable from the other two. In fact, some researchers
think that the Iris data set can be classed into tow classes [55,56].
For breast data, only DNNM-clustering algorithm can provide the
correct number of clusters. And the classification error of DNNM-
clustering algorithm is 3.53 percent. DNA, DFS and SCGA are also
misled in the clustering because of the aforementioned problem
in the selection of the niche radius.

From the experiment results of these data sets, it is seen that
the DNNM-clustering algorithm is robust to the initializations.
Since all the experiments have been repeated R¼ 30 times with
different initializations and in all the cases the correct estimation
of the cluster centers is derived.
6.2. Experiment on remote sensing image clustering

Remote sensing image analysis is attracting a growing interest
in real-world applications. The design of robust and efficient
clustering algorithms becomes one of the most important issues
addressed by the remote sensing community. In this section, we
will apply DNS, SCGA, DFS and DNNM-clustering to the clustering
Water Moun+Veg RA+BR

Water Moun+Veg RA+BR W

Fig. 16. The clustering results of the remote sensing image u
of multispectral remote sensing image based on the spectral data
of pixels. Although the remote sensing images usually have a large
number of overlapping clusters, the experimental results show
that the multispectral image can be effectively grouped into
several clusters by the proposed method.

In this experiment, the algorithms are used to partition
different landcover regions in the remote sensing image. A 512�
512 remote sensing image of a part of MiYun obtained from
Landsat-7 have been chosen. The image considered has three
bands in the multispectral mode: band 3-red band, wavelength
0:63� 0:69mm; band 4-near-infrared band, wavelength
0:76� 0:94mm; band 5-shortwave infrared band, wavelength
1:55� 1:75mm. The pseudocolor images are shown in Fig. 15.

From the pseudocolor images, it can be seen that the landcovers
of the images mainly contain five classes: water, vegetation (Veg),
mountain (Moun), residential areas (RA) and blank regions (BR). In
the experiment, we expect that the four algorithms can partition the
remote sensing images into visually distinct clusters automatically.
The number of population is set to 600 and the maximum
generation 200. The crossover and mutation probabilities are the
same as those used in the first experiment.

The clustering results for the image are shown in Fig. 16 with
gray scale. The number of clusters identified by DNS, SCGA, DFS and
DNNM-clustering are 3, 4, 3 and 6, respectively. As seen from Fig. 16,
Water Moun+Veg Veg RA+BR

ater Moun Veg Veg+BR RA BR

sing: (a) DNS; (b) SCGA; (c) DFS; (d) DNNM-clustering.
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the water and the rivers in the residential areas are distinctly
demarcated from the rest by all the four algorithms. For DNS, SCGA
and DFS, there are some confusion between the residential areas and
blank regions and between the mountain and the vegetation. For the
DNNM-clustering algorithm, most of the landcover categories have
been correctly distinguished. For example, the vegetation on the top
left of the image, the residential areas and many other structures are
identified by the DNNM-clustering algorithm. So we can conclude
that DNNM-clustering algorithm is an efficient clustering algorithm
for differentiating the various landover types present in the image.
6.3. Effect of niche radius

As mentioned earlier, the performance of the DNNM-clustering
algorithm is independent of the initial niche radius. To examine
this claim, we conduct a series of experiments, in which we vary
the value of niche radius s and count the number of niches found.
For these runs we use pc ¼ 0:8, pm ¼ 0:005, set the population size
P¼ 100, and set the number of generations G¼ 200. The results
are averaged over 30 runs for each value of s. The results obtained
for Data 1, Data 4 and Data 5 are shown in Figs. 17, 18 and 19,
respectively. In the experiments, the maximum value of the niche
radius is set to the largest distance between the data points.

The figures show that, as expected, as the niche radius is
increased, the numbers of niches found by DNNM-clustering
remain same to the numbers of the clusters. The DNNM-
clustering algorithm can consistently find all global optima of
the data sets while other three algorithms success only for some
values of radius.
7. Conclusion

In this paper, a robust clustering algorithm based on dynamic
niching with niche migration (DNNM-clustering) has been
developed for solving clustering problems with unknown cluster
number. The DNNM-clustering algorithm can find the optimal
number of clusters as well as the cluster centers automatically. As
the number of clusters is not known a priori in most practical
circumstance, DNNM-clustering algorithm can be used more
widely. In the DNNM-clustering algorithm, each chromosome is
encoded a center of a cluster by a sequence of real-valued
numbers. This is more natural and simple than the presentation
used by other clustering algorithms based on GA. The dynamic
niching is accomplished without assuming any prior knowledge
on the number of niches and the niche radius. The introduction of
the niche migration makes the DNNM-clustering algorithm is
insensitive to the choice of the initial radius. The superiority of the
DNNM-clustering algorithm over DNS, SCGA and DFS algorithm
has demonstrated by the experiments. All the experiment results
described in this paper have shown that our algorithm is effective,
because it provides all the actual cluster centers. Moreover, the
DNNM-clustering has been applied to the multispectral remote
sensing image for clustering the pixels into several classes, which
also illustrated its effectiveness and superiority.

Although the results presented here are extremely encoura-
ging, there is an issue that deserves in-depth study in the future.
The population size is undoubtedly crucial to the performance of
the algorithm. In order to steadily maintain the actual number of
cluster, we should estimate the minimum population size needed
by our method.
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